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Abstract—The uncertainties from deepening penetration of
renewable energy resources have already shown to impact not
only the market operations, but also the physical operations
in large power systems. It is demonstrated that deterministic
modeling of wind would lead to voltage insecurity in the reality
where wind fluctuates. This could render deterministic control of
reactive power ineffective. As an alternative, we propose a chance-
constrained formulation of optimal reactive power dispatch
which considers the uncertainties from both renewables and
contingencies. This formulation of a chance constrained optimal
reactive power dispatch (cc-ORPD) offers system operators an
effective tool to schedule voltage support devices such that
the system voltage security can be ensured with quantifiable
level of risk. The cc-ORPD problem is a Mixed-Integer Non-
Linear Programming (MINLP) problem with a joint chance
constraint and is extremely challenging to solve. Using the Big-
M approach and linearized power flow equations, the original
cc-ORPD problem is approximated as a Mixed-Integer Linear
Programming (MILP) problem, which is efficiently solvable. Case
studies are conducted on a modified IEEE 24-bus system to
investigate the optimal operating schedule under uncertainties
and the out-of-sample violation probability.

I. INTRODUCTION

A. Background

The high variability and limited predictability of renewables
impose new challenges on the secure and reliable operation
of power systems. There has been a substantial amount of
literatures showing that deep penetration of renewables could
jeopardize the security and reliability of power systems [1]–
[3]. For example, the rapid increase and stochastic nature of
renewables might lead to voltage issues, which could be severe
when a stressed system is lack of reactive support. An Optimal
Reactive Power Dispatch (ORPD) problem is often formulated
for better voltage profiles [1]–[3]. The ORPD problem aims
at finding optimal settings of current installed Reactive Power
Support Devices (RPSDs) such as SVCs and Capacitor Banks
to ensure system voltage constraints [4]. Although numerous
papers have studied the ORPD problem, most of them adopt
a deterministic formulation and uncertainties from wind are
ignored.

In this paper, we propose a framework for optimal reactive
power dispatch considering joint uncertainties from wind and
contingencies. The proposed framework is built upon chance-
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constrained programming, which is a natural and efficient tool
for decision making in an uncertain environment.

B. Chance Constrained Programming

Problem (1) is the typical form of a single-stage chance-
constrained program (CCP):

min
x

cᵀx (1a)

s.t. Ax ≥ b (1b)

Pω
(
G(ω)x ≤ h(ω)

)
≥ 1− ε (1c)

x ∈ Rn

Problem (1) aims at finding a cost-minimizing strategy while
satisfying a set of deterministic and probabilistic constraints.
Without loss of generality [5], we assume the objective takes
linear form cᵀx. Decision variables are denoted by x, and
Eqn. (1b) is the deterministic constraint on x. Uncertainties
appear as variable ω ∈ Rm, and the chance constraint Eqn.
(1c) requires the inner constraint G(ω)x ≤ h(ω) to be satisfied
with probability at least 1− ε.

CCPs are often challenging to solve for the following two
reasons: (1) the feasible region of a CCP is usually non-convex
[6]; and (2) it is NP-hard to accurately calculate the probability
in the chance-constraint [7]. There are four typical methods
to get approximately optimal solutions to CCPs: (1) deriving
a deterministic equivalent optimization problem [8], [9]; (2)
convex approximation [6]; (3) scenario approach [5]; and (4)
Big-M approach [10]–[12]. Because the cc-ORPD problem is
a MINLP problem, the Big-M approach, which is a favorable
choice to handle integer variables in CCPs, is selected to solve
cc-ORPD in this paper. More details on the Big-M approach
is provided in Section III.

C. Chance-constrained Programs in Power Systems

There are many applications of CCPs on power system
problems: chance-constrained DCOPF (cc-DCOPF) [13]–[17],
chance-constrained Unit Commitment (cc-UC) [18], [19], us-
ing chance-constrained programming to handle contingencies
in power systems [20], [21]. In this paper, we formulate
a chance-constrained Optimal Reactive Power Dispatch (cc-
ORPD) problem to address the voltage security issue induced
by the deep penetration of renewables and potential contin-
gencies. The cc-ORPD problem is unique in the following
three aspects: (1) It is built upon a more accurate model of
power system (i.e. AC power flow) rather than the simplified
DC power flow model, which appears in most of literatures

978-1-5386-7703-2/18/$31.00 ©2018 IEEE



2

[13], [14], [18]–[20]. (2) The cc-ORPD problem considers
the optimal operation of both continuous and discrete state
voltage support devices. While in [22], only continuous-state
devices (e.g. SVCs) are being considered. (3) The cc-ORPD
problem ensures voltage security with respect to the joint
distribution of contingencies and wind uncertainties. Whereas
most literatures handling contingencies via CCPs [19]–[21]
are based on DC power flow model. As a result, they are
fundamentally incapable of addressing voltage-related issues.

The remainder of this paper is organized as follows: Section
II discusses the impacts of wind uncertainties on voltage
security. Section III introduces the Big-M approach to solve
CCPs. Motivated by the discussion in Section II, we formulate
a cc-ORPD problem in Section IV. Section IV also elaborates
how to derive a computationally tractable form of the cc-
ORPD problem via the Big-M approach. Case studies and
concluding remarks are presented in Section V and Section
VI, respectively.

II. IMPACTS OF WIND UNCERTAINTIES ON VOLTAGE
SECURITY

A. Wind Farm Modeling

The wind farm is often modeled as a negative real load or
pure real power generator in most literatures. While at most
Independent System Operators (ISOs) in the US, wind farms
are required to provide some reactive support to reduce voltage
issues. In this paper, the wind farm is modeled as a negative
load with constant power factor 0.95. Let PW ∈ R|W| and
QW ∈ R|W| denote the forecast value of a set of wind farms
W . And ξ ∈ R|W| represents the forecast errors of wind farms,
ξ ∈ Ξ is a random variable with underlying distribution Ξ. The
actual output of wind farm w is (PW,w+jQW,w)(1+ξw), ∀w ∈
W and also random. In this paper, we assume the underlying
distribution Ξ is unknown but fixed. We also assume that the
power factor is maintained at 0.95 for any wind fluctuations.

B. A Linear Approximation

Reference [23] shows that the voltage magnitudes of PQ
buses become uncertain with wind fluctuations ξ. Fig. 1
presents the voltage magnitudes with respect to wind uncer-
tainties in a modified IEEE 24-bus system [23]. The blue

Fig. 1. Impacts of Wind Uncertainties on Voltage Magnitudes.

curve in Fig. 1 is obtained by solving a series of power

flow equations, which is computationally expensive. Reference
[23] proposes an approximation method using power flow
Jacobian matrix to estimate the voltage magnitude changes to
wind fluctuations. The red curve in Fig. 1 is calculated using
the approximation method in [23]. Although the relationship
between voltage magnitudes and wind fluctuation is funda-
mentally non-linear, Fig. 1 shows that we can get satisfying
approximation using linearized power flow equations.

III. BIG-M APPROACH TO SOLVE CCPS

Given a two-stage chance-constrained program:

min
x,y(ω)

cᵀx+ F [y(ω)] (2a)

s.t. Ax ≥ b (2b)

Pω
(
G(ω)x+ L(ω)y(ω) ≤ h(ω)

)
≥ 1− ε (2c)

x ∈ Rn1
+ × Zn2

+ , y(ω) ∈ Rn3
+

The first stage variable x could take both continuous and
integer values. Notice that the second stage variable y depends
on the realization of variable ω, thus it is denoted by y(ω).

With the well-known “Big-M” approach [10]–[12], Problem
(2) could be reformulated as a deterministic Big-M Mixed 0−1
Integer Program:

min
x,yk,zk

cᵀx+ F [yk] (3a)

s.t. Ax ≥ b (3b)

G(ωk)x+ L(ωk)yk −Mzk ≤ hk (3c)
N∑
k=1

πkzk ≤ ε (3d)

x ∈ Rn1
+ × Zn2

+ , y(ωk) ∈ Rn3
+ , zk ∈ {0, 1}

M is a sufficiently large coefficient and N scenarios are drawn
from Ω: ω1, ω2, · · · , ωN ∈ Ω. The key idea of the Big-M
approach is quite simple: for scenario ωk, if zk = 0, then Eqn.
(3c) becomes G(ωk)x+ L(ωk)yk ≤ hk; if zk = 1, then Eqn.
(3c) becomes −M ≤ hk, which is always true if M is large
enough. In essence, zk = 0 indicates the constraint is retained
and zk = 1 indicates violations are allowed for scenario ωk.
The chance constraint Pω(. . . ) ≥ 1 − ε is approximated by
Eqn. (3d).

IV. CHANCE-CONSTRAINED OPTIMAL REACTIVE POWER
DISPATCH

A. Deterministic Optimal Reactive Power Dispatch

Our previous work [23] solved a look-ahead (deterministic)
optimal reactive power dispatch (LA-det-ORPD) problem with
voltage security constraints. Problem (4) is a simplified version
(only one snapshot) of the LA-det-ORPD problem in [23].
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min hB(QB) + hC(QC) + λ

nc∑
c=0

γcP cL (4a)

s.t. P c = AcG(PG + ηcP cδ ) +AWPW −ADPD, ∀c (4b)
Qc = AcGQ

c
G +ACQC +ABQB −ADQD, ∀c (4c)

P cδ = 1ᵀ(ADPD −AcGPG −AWPW ),∀c (4d)

P ci =

nb∑
j=1

|V ci ||V cj ||Yij | cos(θci − θcj − φij),∀c, i (4e)

Qci =

nb∑
j=1

|V ci ||V cj ||Yij | sin(θci − θcj − φij), ∀c, i (4f)

P cL =

nl∑
l=1,l:i∼j

gl
(
|Vi|2 + |Vj |2 − 2|Vi||Vj | cos(θi − θj)

)
,∀c

(4g)

|V c|− ≤ |V c| ≤ |V c|+ (4h)

QB ∈ {0, Q+
B}, Q−C ≤ QC ≤ Q

+
C (4i)

Q−G ≤ Q
c
G ≤ Q+

G (4j)
i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc

The objective of Problem (4) is to minimize the operation
costs of RPSDs and transmission losses while ensuring voltage
security in nc contingency scenarios. All variables with super-
script c belong to contingency scenario c1. In this paper, we
focus on the N − 1 contingency of losing generators2, which
are modeled by the adjacency matrix of generators AcG. Let
A0
G be the adjacency matrix in the normal operating condition

(i.e. no contingency), AcG is obtained by setting the cth column
of A0

G to zeros.
The decision variables in Problem (4) include the operating

states of discrete RPSDs QB (e.g. shunt capacitors), those of
continuous RPSDs QC (e.g. SVCs) and the voltage set-points
of generators (i.e voltage magnitudes |V c| of PV buses). Eqn.
(4e) and Eqn. (4f) are the nodal power balance constraints,
P c (Qc) is the nodal real (reactive) power injection into the
network. AB ∈ Rnb×nB , AC ∈ Rnb×nC , AD ∈ Rnb×nD ,
AcG ∈ Rnb×ng and AW ∈ Rnb×nW are adjacency matrices of
related components. If component k is connected with bus i,
then A·(i, k) = 1, otherwise A·(i, k) = 0. Alternating Current
(AC) power flow equations are depicted in Eqn. (4e) and Eqn.
(4f). Yij∠φij ∈ C is associated with line (i, j) (from bus i to
bus j) in the admittance matrix Y .

Losing generators causes significant real power imbalance
P cδ , we adopt the affine control [13] scheme to proportionally
allocate P cδ to each generator (i.e. PG+ηcP cδ ). This guarantees
the balance of real power after contingency [13], [23].

Eqn. (4g) calculates the real power losses and Eqn. (4h)
is the voltage security constraints, which typically require
the voltage magnitudes within desired ranges under a set of
plausible contingency scenarios [24]. In this paper, we use
[0.95, 1.05] for normal operation analysis (c = 0) and [0.9, 1.1]

1For simplicity, the normal operating condition is denoted by c = 0.
2Since transmission line failures change the system topology thus the Y

matrix in Eqn. (4e) and Eqn. (4f), we could simply modify the Y matrix to
be Y c to model the cases of losing transmission lines. For simplicity, we only
focus on generator contingencies in this paper.

for contingency analysis (c = 1, 2, · · · , nc). Eqn. (4i) and Eqn.
(4j) are the capacity constraints for RPSDs and generators.

B. Chance-constrained Optimal Reactive Power Dispatch

Motivated by the discussion in Section II, we formulate
a chance-constrained Optimal Reactive Power Dispatch (cc-
ORPD) problem to ensure the voltage security of the system
with respect to wind uncertainties ξ ∈ Ξ and contingencies
c ∈ C. The cc-ORPD problem (Problem (5)) enhances the det-
ORPD problem by adding a joint chance constraint Eqn. (5f).
The violation probability ε in Eqn. (5f) explicitly quantifies the
potential risk of voltage insecurity given the joint distribution
of wind and contingencies C × Ξ.

min hB(QB) + hC(QC) + λEC×Ξ

[
PL(c, ξ)

]
(5a)

s.t. P = AG(c)PG −AG(c)η(c)P cδ −ADPD
+AW diag(PW )(1 + ξ) (5b)

Q = AG(c)QG +ACQC +ABQB −ADQD
+AW diag(QW )(1 + ξ) (5c)

Pδ = 1ᵀAG(c)PG − 1ᵀPG + P ᵀ
W ξ (5d)

Power Flow Equations: Eqn.(4e), (4f), (4g) (5e)

PC×Ξ

(
|V (c)|− ≤ |V (c, ξ)| ≤ |V (c)|+ for PQ buses

and Q−G ≤ QG(c, ξ) ≤ Q+
G

)
≥ 1− ε (5f)

|V (c)|− ≤ |V | ≤ |V (c)|+ for PV buses (5g)

QB ∈ {0, Q+
B}, Q−C ≤ QC ≤ Q

+
C (5h)

i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc

The cc-ORPD problem is a two-stage chance-constrained pro-
gramming problem. The first-stage variables are the operating
states of RPSDs (QB and QC) and the voltage set points of
generators (i.e. voltage magnitudes of PV buses). The second-
stage variables include the nodal injection (P and Q), power
imbalance Pδ , total line losses PL, reactive generation QG,
as well as the voltage magnitudes and angles of PQ buses
(|V | and θ). Since the parameters AcG and ηc depend on the
contingency c, we change the notation to AG(c) and η(c)
for better understanding. Please notice that Eqn. (5b)-(5e) are
equality constraints associated with random variable c and
ξ, therefore the second-stage variables (e.g. P and PL) also
become random variables3.

The cc-ORPD problem is very challenging to solve for
the following three reasons: (1) some decision variables are
binary, thus the feasible region of cc-ORPD is naturally non-
convex; (2) the power flow equations are non-linear equations,
which further increase the difficulty of solving cc-ORPD; and
(3) the chance constraint Eqn. (5f) induces computationally
intractable issues as discussed in Section I-B.

The third difficulty could be handled via the Big-M ap-
proach introduced in Section III. Given a set of scenarios
s1, s2, · · · , s|S|, where S = C × Ξ and each scenario si =
(c, ξ)i ∈ S . We introduce binary variables zi ∈ {0, 1}
for each scenario si = (c, ξ)i. The chance-constraint in cc-
ORPD could be re-written as a set of deterministic inequality

3More rigorous notations should denote the second-state variables are
functions of c and ξ (e.g. P (c, ξ) and PL(c, ξ)). To avoid verbose notations,
we only emphasize this in the chance constraint Eqn. (5f).
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constraints with binary variables zi. Because we want to
ensure the voltage security for all contingency scenarios C,
instead of drawing scenarios (c, ξ)i from C × Ξ, we draw
samples ξ1, ξ2, · · · only from Ξ, and combine them with
nc contingency scenarios utilizing the fact that the generator
contingency c and wind uncertainties ξ are independent. More
specifically, let πc denote the probability that contingency c
happens, and ξk (k = 1, 2, · · · , N ) are the wind scenarios.
The cc-ORPD problem is reformulated as Problem (6), where
variables with superscripts c,k are associated with contingency
c and wind scenario ξk.

min hB(QB) + hC(QC) + λ

nc∑
c=0

γc,k
1

N

N∑
s=1

P c,kL (P sW ) (6a)

s.t. P c,k = AcGPG −AcGηcP c,kδ −ADPD
+AW diag(PW )(1 + ξk),∀c, k (6b)

Qc,k = AcGQ
c,k
G +ACQC +ABQB −ADQD

+AW diag(QW )(1 + ξk), ∀c, k (6c)

P c,kδ = 1ᵀAcGPG − 1ᵀPG + P ᵀ
W ξ

k, ∀c, k (6d)

P c,ki =

nb∑
j=1

|V c,ki ||V
c,k
j ||Yij | cos(θc,ki − θ

c,k
j − φij), ∀c, s, i

(6e)

Qc,ki =

nb∑
j=1

|V c,ki ||V
c,k
j ||Yij | sin(θc,ki − θ

c,k
j − φij), ∀c, s, i

(6f)

P c,kL =

nl∑
l=1

gl
(
|V c,ki |

2 + |V c,kj |
2

− 2|V c,ki ||V
c,k
j | cos(θc,ki − θ

c,k
j )
)
, ∀c, k (6g)

|V c,k| −Mzc,k ≤ |V c,k|+, ∀c, k (6h)

|V c,k|+Mzc,k ≥ |V c,k|−, ∀c, k (6i)

Qc,kG −Mzc,k ≤ Q+
G,∀c, k (6j)

Qc,kG +Mzc,k ≥ Q−G,∀c, k (6k)

QB ∈ {0, Q+
B}, Q−C ≤ QC ≤ Q

+
C (6l)

N∑
k=1

1

N

nc∑
c=0

πczc,k ≤ ε (6m)

i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc, k = 1, 2, · · · , N

C. Linearized cc-ORPD

Problem (6) is a Mixed Integer Non-Linear Programming
(MINLP) problem, which is still computationally intractable.
But the major difficulty here comes from the non-linear
power flow equations. As shown in Section II-B, we could
obtain satisfying approximations via linearized power flow
equations. Thus Eqn. (6e) and (6f) are linearized with respect
to a known operating point (e.g. power flow solutions of a
previous snapshot). Our future works include exploring other
possible approaches to handle non-linearity of power flow
equations (e.g. convex relaxation). Problem (9) is obtained by
replacing Eqn. (6e)-(6f) with Eqn. (7). It is a Mixed Integer
Linear Programming problem and is reliably solvable with

commercial solvers.[
P − P̄
Q− Q̄

]
≈

[
∂P
∂θ

∂P
∂|V |

∂Q
∂θ

∂Q
∂|V |

]
P̄ ,Q̄, ¯|V |,θ̄

×
[

θ − θ̄
|V | − ¯|V |

]
(7)

PL − P̄L ≈
[
∂PL

∂θ
∂PL

∂|V |

]
P̄ ,Q̄, ¯|V |,θ̄

×
[

θ − θ̄
|V | − ¯|V |

]
(8)

min hB(QB) + hC(QC) + λ

nc∑
c=0

γc,k
N∑
s=1

P c,kL (P sW ) (9a)

s.t. Eqn. (6b), (6c), (6d) (9b)
Eqn. (7), (8) (9c)
Eqn. (6h), (6i), (6j), (6k), (6l), (6m)

∆|V |− ≤ |V c,k| − |V | ≤ ∆|V |+ (9d)

∆|θ|− ≤ |θc,k| − |θ| ≤ ∆|θ|+ (9e)
i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc

V. CASE STUDY

A. Settings
Case studies are conducted on a modified IEEE 24-bus

system [23]. There are 38 contingencies considered in the case
study, each one represents the scenario of losing one generator
at a PV bus4. We assume the probability of the normal
operating condition is π0 = 90%, and each contingency
happens with equal probability, i.e. πc = 10%/38 = 0.26%.
By tuning the probabilities πcs and ε, we could achieve a
balance between a more economic system and a more secure
system. The wind uncertainty ξ is assumed to be Gaussian
ξ ∼ N (0, 5%), from which 100 scenarios ξk are drawn and
plugged in Problem (9). It is worth mentioning that solving
Problem (9) solely relies on the scenarios ξk, it does not
require any prior knowledge on the underlying distribution.

B. Simulation Results
Problem (9) was solved via Matlab2016b and Gurobi 7.5

on a Desktop with Intel i7-2600 8-core CPU@3.40GHz and
16GB RAM memory. Gurobi found the optimal solution with
0.0% gap in 330 seconds. The optimal objective value is
$1668.13. Fig. 2 demonstrates the optimal voltage set points
of generators and the voltage magnitudes of PQ buses in the
normal operating condition. The voltage magnitudes of bus 4
and bus 14 are fluctuating due to wind uncertainties, while
some buses (e.g. bus 17, 19 and 20) remain almost the same
voltage magnitudes.

Besides the optimal solution to the cc-ORPD problem,
we are also interested in the actual violation probability
ε̂. Let ε̄ denote the expected violation probability: ε̄ :=∑N
k=1

1
N

∑nc

c=0 πcz
∗
c,k, where z∗c,k is from the optimal solution

to Problem (9). It is obvious that ε̄ ≤ ε. Let ε̂ denote the actual
“out-of-sample” violation probability:

ε̂ :=
N̂∑
k=1

1

N̂

nc∑
c=0

πc1Qc,k
G /∈[Q−

G,Q
+
G] or |V c,k|/∈[|V c|−,|V c|+] (10)

4If there is only one generator at the PV bus, losing the generator will
make it to a PQ bus. For simplicity, we replace it with two generators with
half capacities.
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Fig. 2. Voltage Magnitudes in the Normal Operating Condition.

where 1conditions is the indicator function. We generate an
independent set of N̂ scenarios and calculate the voltage
magnitudes and reactive power generations using linearized
power flow equations [23] or solving the power flow equations.

Fig. 3. Violation Probabilities.

The blue curve in Fig. 3 is the expected violation probability
ε̄ from the optimal solution z∗. And the red line ε̂ is calculated
on N̂ = 100 scenarios using linearized power flow equations
[23]. The out-of-sample violation probability ε̂ is very close
to ε̄. With a larger number of scenarios embedded in Problem
(9), the expected ε̄ and actual ε̂ will be closed to the violation
probability ε in the chance constraint.

We also compare the results of cc-ORPD (Problem (9))
with det-ORPD (Problem (4)). With a little sacrifice on the
total cost, the cc-ORPD could ensures voltage security with
probability 98.8%. While the results of det-ORPD lead to
voltage magnitudes lower than the desired lower bound |V c|−.
In the results of det-ORPD, we even observe undesirable low
voltage magnitudes in the normal operating condition, which
results in the large violation probability in Table I.

TABLE I
DET-ORPD VS CC-ORPD

det-ORPD cc-ORPD (ε = 0.01)
Objective 1610.2 1668.1
ε̂ 52.1% 1.2%

VI. CONCLUDING REMARKS

In this paper, we propose a chance-constrained formula-
tion of optimal power reactive dispatch to schedule RPSDs
considering uncertainties from wind and contingencies. The
cc-ORPD problem is reformulated as a computationally solv-
able form using the Big-M approach and linearized power

flow equations. Case studies demonstrate the effectiveness
of the proposed cc-ORPD framework. Future works include
investigating convex relaxations of power flow equations and
utilizing improved versions of the Big-M approach [11], [12].
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